
Android ION Hazard: the Curse of Customizable Memory
Management System

Hang Zhang, Dongdong She, Zhiyun Qian
University of California, Riverside

hang@cs.ucr.edu, dshe002@ucr.edu, zhiyunq@cs.ucr.edu

ABSTRACT
ION is a unified memory management interface for Android
that is widely used on virtually all ARM based Android de-
vices. ION attempts to achieve several ambitious goals that
have not been simultaneously achieved before (not even on
Linux). Different from managing regular memory in the
system, ION is designed to share and manage memory with
special constraints, e.g., physically contiguous memory. De-
spite the great flexibility and performance benefits offered,
such a critical subsystem, as we discover, unfortunately has
flawed security assumptions and designs.

In this paper, we systematically analyze ION related vul-
nerabilities from conceptual root causes to detailed imple-
mentation decisions. Since ION is often customized heavily
for different Android devices, the specific vulnerabilities of-
ten manifest themselves differently. By conducting a range
of runtime testing as well as static analysis, we are able to
uncover a large number of serious vulnerabilities on the lat-
est Android devices (e.g., Nexus 6P running Android 6.0 and
7.0 preview) such as denial-of-service and dumping memo-
ry from the system and arbitrary applications (e.g., email
content, passwords). Finally, we offer suggestions on how to
redesign the ION subsystem to eliminate these flaws. We
believe that the lessons learned can help guide the future
design of similar memory management subsystems.

1. INTRODUCTION
Android operating system has gained tremendous pop-

ularity in the past few years thanks to the huge vendor
support behind it. Unlike iOS that runs on only Apple-
assembled hardware, Android is open source and encourages
other vendors to build smartphones using it. This model
works well as vendors do not need to build a new OS from
scratch, and they can still heavily customize the phones to
differentiate themselves on the market. The customization
happens at all layers including hardware, OS, and applica-
tions. Major vendors such as Samsung, HTC, and Huawei
all perform customizations to attract customers with fea-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria
c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978320

tures like better screens, audio, and even security [29]. While
such customization itself is encouraged, it has been shown
that the process of customization at the software layer often
introduces security vulnerabilities [28, 29, 27].

In this study, we investigate an important OS subsystem,
called ION, that is commonly customized to satisfy different
requirements from the underlying hardware devices. ION [8]
is a unified memory management interface widely used on
ARM based Android platforms. First introduced by Google
in Android 4.0, it was initially designed to replace previ-
ous fragmented interfaces originated from System-on-Chip
(SoC) vendors [8]. Its main goal is to support the special
requirements set by hardware devices such as the GPU and
camera. For instance, some devices require physically con-
tiguous memory to operate and some require certain cache
coherency protocol for DMA to function correctly. To sat-
isfy such requirements, on a given Android phone, ION is
customized with a set of pre-configured memory heaps for
the underlying hardware devices. Even though AOSP pro-
vides a set of pre-defined heap types and implementations
of heap allocation and management, customization is com-
monplace for performance tuning and other purposes (as we
will show in the paper). In addition, for hardware devices
not covered by AOSP, vendors often need to define new heap
types as well as provide their own implementations of heap
allocation and management.

Unfortunately, the framework for supporting such cus-
tomization is not well thought out regarding its security
implications. For instance, we discover that the lack of fine-
grained access control to individual memory heaps can eas-
ily cause denial-of-service of specific system services or the
entire OS. Moreover, its buffer sharing capability exposes
different types of kernel memory to user space without be-
ing screened carefully for security consequences. To demon-
strate the seriousness of the identified vulnerabilities, attack
demos and analysis can be found on our project website [1].
In this paper, we make three main contributions:

• We systematically analyze the security properties from
the design and implementation of ION, and reveal two
major security flaws that lead to many vulnerabilitis and
corresponding exploits, which are already reported to and
confirmed by Google.

• To detect specific vulnerability instances, we develop both
a runtime testing procedure and a novel static taint anal-
ysis tool that help uncover vulnerabilities on newest flag-
ship models like Nexus 6P and Samsung S7 running An-
droid 6.0 and 7.0 preview (latest at the time of writing).

• By analyzing the root causes of the problem, we propose

Types Instance Page source Is contiguous
SYSTEM Nexus 6P:system alloc pages() of buddy allocator n

SYSTEM CONTIG Nexus 6P:kmalloc alloc pages() of buddy allocator or kmalloc() y
CARVEOUT Samsung S7:camera preserved memory region, not reusable y

CMA Nexus 6P:qsecom preserved memory region, reusable y
SECURE CMA Nexus 6P:mm preserved memory region, reusable y

CHUNK N/A preserved memory region, not reusable y
REMOVED N/A preserved memory region, not reusable y
EXYNOS Samsung S4:exynos noncontig heap alloc pages() of buddy allocator n

EXYNOS CONTIG Samsung S4:exynos contig heap preserved memory region, reusable y
CPUDRAW Huawei Mate8:cpudraw heap preserved memory region, not reusable y

1 N/A means that we have not observed actual instances of the heap type
2 Even the same type can have different implementations on different devices

Table 1: ION heap types and instances

alternative designs that preserve the ION functionality
while eliminating its security flaws. We believe the lessons
learned can shed light on future designs of customizable
and extensible memory management system.

The remaining part of the paper will be organized as fol-
lowing: §2 will briefly introduce some ION-related back-
ground knowledge, §3 will give a thorough analysis of ION
related vulnerabilities, §4 will detail our methodology to
systematically identify the vulnerabilities on a wide range
of Android devices, §5 will summarize the vulnerabilities
we find on various devices and evaluate the effectiveness of
our methodology, §6 will demonstrate our actual exploita-
tions against ION related vulnerabilities on some represen-
tative devices. In §7, we discuss possible defense against
the vulnerabilities. §8 discusses the related works and §9
will conclude the paper.

2. BACKGROUND
As briefly described, ION is designed to achieve two main

goals. First, it aims to support hardware devices with di-
verse memory requirements. Prior to ION, different SoC
vendors achieve this through proprietary and mutually in-
compatible interfaces such as PMEM for Qualcomm, N-
VMAP for Nvidia, and CMEM for TI [8]. System and ap-
plication developers have to customize their code heavily for
all such interfaces to ensure that the code can work across
all different platforms. This problem is greatly alleviated
since the introduction of ION that defines a common in-
terface irrespective of SoC manufacturers. The underlying
implementation in the form of a driver can be customized by
SoC and smartphone vendors to guarantee that they return
the correct type of memory asked by the user space.

As with most interfaces exposed to user space, the unified
ION interface is exposed through the /dev/ion file, which
can be manipulated through open() and ioctl() system
calls. The specific set of supported operations include “al-
loc” and “free”. The user space code needs to specify a heap
id from which the memory should be allocated. As shown in
Figure 1, each ION heap has an assigned name, id, and more
importantly, an associated heap type that is pre-defined for
a particular Android device. Table 1 illustrates the set of
AOSP-defined heap types, along with a selected subset of
customized heap types we encounter in the studied Android
devices. Even though incomplete, it illustrates the complexi-
ty of ION with heaps of different types and properties. Some

������ ��

�

�����	

+alloc()
+free()
…
+mmap()

���

�������

������ �����
� ������� �����
	

������

������� �����
�

Figure 1: ION Architecture

heap types may appear to have similar properties: CMA and
SECURE CMA. However, they actually serve different pur-
poses. CMA is accessible by third-party apps and system
services. However, SECURE CMA is usually intended to
be used by trusted world (See TrustZone [4]), thus inacces-
sible from user space. Also, we omit another dimension,
cache coherency, which is not the focus of this study.

Generally the heaps fall into two categories: 1) Unre-
served. The most representative one is the SYSTEM heap,
whose memory provider is the low-level buddy allocator ac-
cording to our analysis , the same as memory allocated
through malloc(). 2) Reserved. This includes CARVEOUT
and CMA heaps that involve memory set aside at boot time
so as to combat memory fragmentation at runtime [23].

The second goal of ION is to allow efficient sharing of
memory between user space, kernel space, and the hardware
devices. This is achieved by sharing memory pages directly
to avoid copying. Specifically, following the ION interface
explained earlier, once memory is allocated successfully from
a heap, a file descriptor is returned to user space which can
be subsequently used to invoke mmap() to map the allocated
pages into user space. This feature can be handy in many
scenarios. For instance, in the case where both software
and hardware rendering are needed for graphics processing,
libraries such as OpenGL can manipulate the memory in
user space easily and a GPU can also populate the same
piece of physical memory with zero copying.

3. VULNERABILITY ANALYSIS
So far, we have explained the design philosophy of ION

including 1) unified memory management interface for ease

of use and 2) memory sharing support between user and
kernel space. Interestingly, each one introduces a new class
of vulnerabilities. In this section, we will unveil the root
causes of the security flaws.

3.1 Problems Introduced by Unified Interface
As mentioned in §2, ION uses a unified interface /dev/ion

for all types and instances of memory heaps it manages. Un-
like the general memory allocated through malloc() in user
space, ION heaps come with different sizes and purposes,
which require a different security design than the one for
general memory. In Android, an application can allocate
“unlimited” amount of general memory through malloc().
Because it is general memory, applications may have legiti-
mate reasons to allocate and use a large amount of memory
(e.g., 3D gaming apps). The only time when memory allo-
cation fails is when the system is running out of memory.

Unfortunately, ION inherited the security design for gen-
eral memory. There does not exist any limit on how much
memory one can consume in ION heaps, causing poten-
tial DoS attacks. Even worse, due to the fact that third-
party apps have legitimate reasons to allocate memory from
at least one heap type (for graphic buffers), the unified
/dev/ion interface needs to have a relaxed permission that
allows anyone in user space to have access to potentially all
ION heaps. Indeed, on all 17 phones we studied, the file per-
mission of /dev/ion is always world-readable 1. There exists
no other security mechanisms (e.g., access control) beyond
the file permission and therefore any app can allocate any
amount of memory from any ION heaps (but no more than
the max available of a certain heap). Due to characteristics
of different heap types, such a capability can lead to two
different DoS attacks:

For fixed size heaps. Certain ION heap types such as
CARVEOUT and CMA have a pre-determined size and re-
gion from which users can allocate memory from. These
heaps are typically used for various system functionalities,
e.g., “audio” heap is used by “mediaserver” on Nexus 6P to
perform audio playback. As mentioned in §1, during the An-
droid device customization process, the available heap types
and instances are tailored to satisfy the need of hardware de-
vices. In the above example, the “audio” heap is designed to
work with a specific audio chip. As long as a user exhausts
all free space of a certain heap, related system functionalities
will stop working due to the failure to get required memory
from the specific heap, e.g., sound/music playback on Nexus
6P will be disabled if “audio”heap is occupied by a malicious
app. In some cases, critical service failure can even cause the
whole system to crash as shown in §6.

For unlimited size heaps. Some heap types, such as
SYSTEM, have no pre-reserved memory regions. Accord-
ing to our analysis, memory allocated from the SYSTEM
heap is not correctly accounted for as part of the memory
usage of the calling process. Thus, from SYSTEM heap a
process can request as much memory as the current system
can supply. When a user process drains too much memory
from such heaps, the performance of the whole system will
be affected. Besides, due to the existence of Android low
memory killer [2], other innocent processes may get killed
to release more memory in such a situation. More detailed
analysis is given in §6.
1Readable on /dev/ion in fact allows both memory alloca-
tion and memory mapping to user space [8].

One may argue that the above problems can be solved
by integrating a general access control or quota limitation
mechanism into current ION interface, however, this may
not be an easy solution as will be discussed in §7.

3.2 Problems Introduced by Buffer Sharing
As mentioned earlier, the zero-copy buffer sharing among

user space, kernel space, and hardware devices is one of the
main goals of ION. While some specific heap types such as
SECURE CMA may deny any access from user space, there
is no general restriction in the ION framework; therefore
users can allocate memory from most heaps and map them
into user space for read and write operations. This can lead
to two different security problems:

System crash due to hardware protection. Some
heaps’ memory regions can be protected by hardware secu-
rity mechanisms like TrustZone [4] so that any access from
untrusted world will cause a protection exception which usu-
ally leads to a system crash or reboot. Unfortunately ION
buffer sharing unexpectedly makes such protected heaps ac-
cessible to untrusted world apps, as will be shown in §6.
Sensitive information leakage. ION memory are

drawn from various memory heaps, whose allocation func-
tions correspond to low-level kernel functions such as kmal-
loc() and dma_alloc_*(). By default, many of them do
not zero the newly allocated pages for performance reason-
s. The original assumption was that such pages will never
get mapped to user space directly and hence safe to use in
kernel. Unfortunately it is no longer correct with the intro-
duction of ION that exports such heaps to user space for
buffer sharing. We confirm that it is far from rare cases
that buffers allocated from ION heaps contain dirty pages.
A large number of Android devices, including the newest
models like Nexus 6P, have one or more ION heaps failing
to clear allocated buffers before handing them to user space,
which eventually enables any third-party app to access sen-
sitive information leaked from kernel, system services, and
user applications.

3.2.1 Root Cause Analysis of Unzeroed Pages
After careful investigation, we summarize two main rea-

sons for unzeroed pages:
Customization. ION by design has good extendability

and supports customization, as described in §1. Different
vendors can have their own choices about which heap types
to use and how they will be implemented. They can also
implement new heap types by themselves as shown in Ta-
ble 1. Thus, even though all the default heap types have
zeroed their allocated buffers in AOSP common branch k-
ernels since 3.10, in practice, almost all Android devices are
shipped with customized ION implementation which do have
the dirty page problem.

Kernel memory allocation functions with compli-
cated behaviours regarding buffer zeroing. Unlike
the relatively simple and limited interfaces for user-space
memory allocation like malloc(), there exist many different
memory allocation interfaces in kernel space, which will be
directly used by various ION heap types. malloc() typical-
ly involves the system call brk() and mmap() where virtual
pages are returned first. Upon accessing such pages by the
program, a page fault occurs which triggers the OS to lo-
cate a physical page and map the accessed virtual page to
it. Due to the obvious security risks, the OS always zeroes

the physical page before mapping it to user space (unless it
is a page recycled from the same process).

In contrast, other kernel memory allocation functions are
diverse, largely undocumented, and not well understood.
They generally fall into three categories:

1) Guaranteed zeroing. Interfaces like kzalloc() are guar-
anteed to zero the allocated memory, which do not pose any
threats even when exposed to user space through ION.

2) Expected to zero but actually may not. Some func-
tions will decide whether to zero the memory based on
some function parameters like GFP ZERO flag used in
alloc_pages() of buddy allocator. However, there is
no guarantee that the zero operation will be performed.
In our analysis, we found that some functions, like ar-

m64_swiotlb_alloc_coherent(), do accept a parameter de-
ciding whether to zero the allocated buffer, but the function
implementation simply does not honor such a parameter at
all. A similar issue was reported previously in [9].

3) Undecidable and undocumented zeroing behaviour.
There also exist other functions where it is not ob-
vious whether the returned pages will be zeroed.
gen_pool_alloc_aligned() is one such function that is usu-
ally used by CARVEOUT heaps.

The confusing behaviors of various kernel memory allo-
cation functions makes it difficult for developers to decide
whether they should zero the buffer after invoking any k-
ernel memory allocation function. On one hand, failure to
zero the buffer may cause information leakage, while on the
other hand, repeated zeroing operations may affect the over-
all performance, especially on embedded platforms. As an
example, some buffer zeroing logic is surprisingly comment-
ed out intentionally for several ION heap types according to
the kernel source code for Huawei Mate 8, a popular device
running Android 6.0. We suspect that developers are trying
to avoid the extra performance penalty, but the end result
is a severe security flaw as will be demonstrated in §6.

4. METHODOLOGY
In this section, we will present our methodology to sys-

tematically test and discover the vulnerabilities uncovered
in §3.
4.1 Problems Introduced by Unified Interface

The goal is to test whether a third-party app can indeed
occupy memory from different heaps entirely to cause DoS
attacks. Further, we want to understand what specific sys-
tem functionalities can be targeted using which heaps. To
this end, we design a simple runtime testing procedure as fol-
lows: given an Android device, we first enumerate all avail-
able ION heaps (declared through the Device Tree file [5]),
identify their type and size information; we then try to al-
locate buffers from them with an ION memory probing app
we develop. Once we find a heap able to provide memory to
our app, we will further try to exhaust all available memory
resources remained in the heap. This can be automatical-
ly done by our probe program, which will try to allocate a
buffer as large as possible in each iteration of a loop and ter-
minate the loop if no more memory can be allocated. The
largest available buffer size in each iteration is decided by
an efficient binary-search style probing. For unlimited sized
SYSTEM heaps, we will also try to allocate as much mem-
ory as we can, until exceptions occur, such as our process
getting killed by low memory killer.

As soon as an ION heap is exhausted, we will monitor
system behaviors to see whether there will be any anoma-
lies. Usually the heap name will give a good indication about
what system behaviors to watch, for example, the name“au-
dio” suggests that the heap should be used for audio data
processing, then we will focus on the issues such as whether
the system can still play sound normally. For SYSTEM
heaps, we mainly focus on questions like whether the sys-
tem performance will be affected or whether there are other
processes get killed by low memory killer. If kernel and plat-
form source code for the target device is available, we will
also try to take a reference of it to figure out how the ded-
icated ION heaps will be used, which can help us find the
potential DoS problems more efficiently and precisely.

4.2 Problems Introduced by Buffer Sharing
If a heap not only allows our app to allocate memory

from it but also enables it to access the allocated buffers,
then we will first attempt to access the buffers. In some
cases, a simple memory read operation can already cause a
system crash as described in §3. If the buffer can be accessed
without causing exceptions, we will then determine whether
the buffers from the current heap may contain dirty pages.
This can be done in two ways:

Blackbox testing. We can simply exhaust the free s-
pace of a certain heap and read the allocated buffers to see
whether they contain any non-zero bytes. To avoid the cases
where the heap may not be populated by other services yet,
e.g., camera has not been used yet and therefore no data
has been stored in the heap, we could write to the heap first
and later on read from it again from another app to see if
the data remain. The challenge with such a blackbox test-
ing approach is that the behaviors can be dependent on the
system state and the parameters we pass through the ION
interface, which may not be easy to determine; this can lead
to inaccurate assessments. In addition, blackbox testing also
requires access to actual devices.

Program analysis. Alternatively, if the kernel source
code for an Android device is available, which usually is
the case due to open source licensing requirements, we can
in fact accurately determine this via static analysis on the
source code. As discussed before in §3.2, since the behav-
iors of kernel memory allocation functions are complex and
in many cases not well documented, program analysis can
automate the process and greatly reduce the manual effort.

4.2.1 Static Taint Analysis on Buffer Zeroing
To fulfill this task, we design and implement a novel static

taint analysis tool to analyze the zeroing behaviors of mem-
ory allocation functions. Our design is based on three key
observations:

(1) Most, if not all, memory allocation functions will take
a parameter indicating the size of the requested memory.
We consider such “size” parameters as taint source.

(2) Usually the zeroing operations will be performed
through some common utility functions such as memset(),
which will be considered the taint sink.

(3) When buffer zeroing operations occur in memory al-
location functions, the amount of memory zeroed should be
dependent on the “size” taint source. In other words, the
taint source should propagate to the sink to indicate a true
buffer zero operation.

The lack of an information flow from the source (“size”) to

1 allocate_1(…,size,...){
2 order=log_2(size);
3 some allocation operations;
4 memset(addr,0,2^order);
5 }

Figure 2: Data dependency

1 allocate_2(…,size,...){
2 some allocation operations;
3 for(i=0;i<size;i+=4096)
4 memset(addr+i,0,4096);
5 }

Figure 3: Control dependency

sink (functions such as memset()) in an ION heap allocation
function indicates that the function does not zero the buffer
before returning it to user space. It is worth noting that the
analyzed memory allocation functions may include zeroing
operations for some internal or temporary data structures
other than the allocated buffer, in which case may cause
confusion. Our intuition is that such data structures will
not be dependent on the “size” taint source and therefore
can be eliminated automatically.

Design Considerations. Even though the formulated
problem is clearly defined, there are still several compli-
cations that need to be carefully considered. First, taint
propagation typically has two forms: data dependency (ex-
plicit flow) and control dependency (implicit flow). We need
to decide whether to track data dependency alone or both.
Most static taint analysis tools focus on only data depen-
dency [22, 12, 17, 26]. However, in the case of memory
zeroing operations, the decision may not be so straightfor-
ward. We illustrate two real world examples (simplified) we
encounter in Figure 2 and Figure 3. allocate_1() round
up the requested size to the nearest power of 2 before al-
locating a buffer and memset()ing it. The “order” variable
is data dependent on the “size” taint source; therefore, it is
sufficient to consider data dependency only in this case. In
contrast, allocate_2() decides to invoke memset() to zero
the allocated buffer page by page. No data dependency ex-
ists from “size” to the parameter of memset(). Instead, a
tainted control dependency exists from “size” to memset()

as the loop condition is dependent on “size”. In this case, we
will need to follow all function calls after meeting a taint-
ed control dependency so as to not miss any sink functions
(e.g., memset()). However, such strategies can incur false
positives, as we will show in §5.3. We acknowledge that it is
an inherently difficult problem to propagate taint through
control dependencies, as is recognized in prior work [13].
As an alternative solution, manual intervention can be used
to determine the propagation rules upon each tainted con-
trol dependency. We give a complete walkthrough of the
methodology in §5.3.

Second, it is possible that the ION memory allocation
function may internally invoke different low-level kernel
memory allocation functions (e.g., fall back to a different
function if a previous one fails). Therefore, even if there
exists an information flow from source to sink (for certain
program paths), it does not rule out the possibility that an-
other program path does not zero the buffer. To address
this issue, our tool will output the unique call chains as-
sociated with the taint paths and guide the developer to
look for other low-level memory allocation functions; our
assumption here is that there must exist a different mem-
ory allocation function for each type of low-level memory
allocator. Depending on the system state, or the result of
an earlier memory allocator, ION may choose to invoke a
different memory allocator (again, in the form of a separate
function). With this assumption, the tool can output the

Kernel source code

Intermediate files

Related functions to
the target function

Function summary

Pre-process

Filtering

Summary based
taint analysis

Specify target
function

Zeroed paths, call chains
and their consraintsGenerating paths

TP paths and call
chains, constraints

Exclude FP results
Un-zeroed
paths Inference

Developers

Figure 4: Static taint analysis tool workflow

callees for each memory allocation function in the tainted
call chain. If developers recognize any callee that also ap-
pear to be a memory allocation function (and takes in a
tainted argument), they can query the taint analysis result
to see if the callee has encountered any zero operation down
the line. If so, the tool simply repeats the same procedure
to look for additional candidate callees. Otherwise, we con-
clude that there does exist a program path that performs
memory allocation without buffer zeroing. In §5.3, we use
the SYSTEM heap on Nexus 6P as a case study to explain
the methodology in detail.

Third, theoretically buffer zeroing can also occur during
memory release functions, e.g., free(). In practice, we find
that ION heaps always have relatively simple logic in mem-
ory release functions and they almost never zero buffers in
them. This could be due to the fact that memory alloca-
tion functions can opportunistically skip zeroing operations
if the pages are from the same process, e.g., memory allocat-
ed through malloc(). Also, if the released memory is not be
reused afterwards, the zeroing is simply wasted. Therefore,
in our analysis, we focus on analyzing memory allocation
functions, which are orders of magnitude more complex and
may or may not contain zeroing operations.

Implementation. We implement the static taint analy-
sis based on STAC [7], an open source static taint analysis
tool. The workflow is described in Figure 4. Given the
kernel source code of a specific Android device, we first per-
form pre-processing using GCC to produce .i files with ex-
panded macros and include files. Then we perform filtering
to exclude the functions that are never reachable from the
ION functions. Finally, we implement a flow-sensitive taint
analysis engine that takes in the entry function, i.e., ION
memory allocation functions, as well as the source and sink.
When the taint engine finishes the computation, we output
the taint paths where the source“size”can successfully prop-
agate to sinks (e.g., memset()). Finally, we group the taint
paths into call chains for developers to inspect and confirm.
Based on the true positives, developers can then follow the
procedure described above to locate unzeroed paths.

5. EVALUATION
In this section, we will first give the experiment setting

and a summary of discovered vulnerability instances. Then
we will evaluate the effectiveness of the methodology to dis-
cover two classes of vulnerabilities, including how successful

Devices Platform Kernel A1 A2 A3 A4
effect heap effect heap effect heap effect heap

Galaxy S7* exynos5 3.18.14 D1

T3:N7,N16
T4:N15,N11
T5:N17,N14,
N12,N13

yes T1:N18 no no L1 T3:N7,N16

Galaxy S6* exynos5 3.10.61 D1,D4,D3 T3:N5,N3 yes T1:N18 no no L1 T3:N3,N5
Meizu Pro 5 exynos5 3.10.61 D1,D4 T3:N5,N3 yes T1:N18 no no L1 T3:N3,N5
Nexus 6P* msm8994 3.10.73 D1,D2 T4:N2,N4,N1 yes T1:N19 T2:N20 yes T4:N6 L2,L4 T4:N1,N4,N2
LG V10 msm8992 3.10.49 D1,D2 T4:N2,N4,N1 yes T1:N19 T2:N20 no no L2,L4 T4:N1,N4,N2
HTC A9 msm8952 3.10.73 D1,D2 T4:N2,N4,N1 yes T1:N19 T2:N20 yes T4:N6 L2,L4 T4:N1,N4,N2

Oppo R7sm* msm8916 3.10.49 D2 T4:N2,N4,N1 yes T1:N19 T2:N20 yes T4:N6 L2,L4 T4:N1,N4,N2
Nexus 5X* msm8992 3.10.73 D1,D2 T4:N2,N4,N1 yes T1:N19 T2:N20 no no L2,L4 T4:N1,N4,N2
Xiaomi 4C* msm8992 3.10.49 D2 T4:N2,N4,N1 yes T1:N19 T2:N20 no no L2,L4 T4:N1,N4,N2
vivo Y927 msm8916 3.10.28 D2 T4:N2,N4,N1 yes T1:N19 T2:N20 no no L2,L4 T4:N1,N4,N2

Nexus 5* msm8974 3.4.0 D2
T4:N2,N4
T3:N1,N6

yes T1:N21 T2:N20 no no L2 T3:N1

LG D950* msm8974 3.4.0 D2
T4:N2,N4
T3:N1,N6

yes T1:N19 T2:N20 no no L2 T3:N1

HTC D816 msm8226 3.4.0 D2
T4:N2,N4
T3:N1,N6

yes T1:N19 T2:N20 no no L2 T3:N1

Oneplus One msm8974 3.4.0 D2
T4:N2,N4
T3:N1,N6

yes T1:N19 T2:N20 no no L2 T3:N1

Galaxy note 3 msm8974 3.4.0 D2,D4
T4:N2,N4

T3:N1,N6,N7
yes T1:N19 T2:N20 no no L1,L2 T3:N1,N7

Huawei P9 hi3650 3.4.90 D5 T3:N8 yes T1:N22 T2:N10 no no L4
T4:N9
T2:N10

Huawei Mate8* hi3650 3.4.86 D5 T3:N8 yes T1:N22 T2:N10 no no L4
T4:N9
T2:N10

* Devices with detailed experimentation and constructed exploits
- “effect” column shows only attack effects known to us (which can be incomplete)
[A] Vulnerabilities Classification: A1:DoS for limited size heaps A2:DoS for unlimited size heaps

A3:System crash due to protection exception A4:Information leakage
[D] DoS Attack: D1:fingerprint D2:audio D3:video D4:camera D5:system crash
[L] Information Leakage: L1:camera L2:audio L3:video L4:general user apps
[T] Heap Type: T1:SYSTEM T2:SYSTEM CONTIG T3:CARVEOUT T4:CMA T5:SECURE CMA
[N] Heap Name: N1:audio N2:adsp N3:video N4:qsecom N5:secdma N6:pil N7:camera N8:carveout-heap N9:ion-dma-heap

N10:system-contig-heap N11:video nfw N12:video fw N13:video scaler N14:video frame N15:crypto N16:gpu crc
N17:gpu buffer N18:ion noncontig heap N19:system N20:kmalloc N21:vmalloc N22:system heap

Table 2: Vulnerability summary

is the static taint analysis tool in practice. Finally, we will
use case studies to highlights important findings.

Scope. We have analyzed 17 Android devices in total,
which are listed in Table 2. They cover a wide range of
devices such as Nexus, Samsung, to HTC. All of them are
verified through runtime testing and source code analysis.
Out of 17 devices, we have experimented in detail using 8
devices, for which we have constructed exploits to confirm
the existence of vulnerabilities.

5.1 Summary of ION related Vulnerabilities
After applying the methodology described in §4, we re-

port our findings in Table 2. Note that we group the tested
devices based on their hardware platforms (SoC vendor and
model) and kernel versions. This is because hardware de-
vices are the most common reason for customization of ION.
Generally speaking, devices sharing the same hardware plat-
form will have similar configurations regarding ION heap
types and instances. In addition, different phone vendors
and kernel versions may also have an impact.

In our study, we focus on three main general hardware
platforms: MSM (Qualcomm), Exynos (Samsung), and Hisi
(Huawei). Each platform can also include different models,
e.g., Snapdragon 810 and 820 correspond to two different
Qualcomm SoCs, along with numerous Android and kernel
versions. As we can see in the Table, there exist a variety of
vulnerable ION heaps (up to 22 instances across all devices).

In the Table, we breakdown the vulnerabilities into 4 cat-
egories, along with their corresponding attack effects and
vulnerable heaps (types and instances). For instance, re-
garding A1: DoS against heaps of limited size, all experi-
mented devices are vulnerable in one form or another. On
Huawei devices specifically, A1 attack can even cause the
whole system to crash directly. Regarding A4: information
leakage, all studied Android devices have unzeroed memory
that can be leaked from different heap types. The most sur-
prising result is that 9 out of 17 devices have the information
leakage vulnerabilities that allow a malicious app to obtain
dirty pages used by other apps, which can contain sensitive

Heap Type TP* FP* FN* Un-zeroed paths? Analysis/Actual result Involved allocation function
SYSTEM 1158(8) 5 0 n zeroed/zeroed alloc pages()**

SYSTEM CONTIG 288(6) 0 0 n zeroed/zeroed alloc pages()**
CMA 4(4) 2 0 y un-zeroed/un-zeroed dma alloc attrs()

CARVEOUT 0(0) 0 0 y un-zeroed/un-zeroed gen pool alloc aligned()
* TP, FP, and FN refer to the amount of call chains. The number in brackets indicate the number of paths.
** The parameters passed to alloc pages() are different for the two heap types.

Table 3: Static taint analysis result on Nexus 6P

information such as passwords, credit card numbers, or even
secret keys.

Although the number of Android devices we analyze is
limited, they do cover most representative manufactures,
hardware platforms and software versions, thus we can in-
fer that most Android devices to date are affected by ION-
related vulnerabilities. Specifically, Nexus 6P, Samsung
Galaxy S7, and Huawei Mate 8 represent the latest devices
from each manufacturer, all of which have both DoS and
information leakage vulnerabilities.

5.2 Runtime Testing for DoS Vulnerabilities
The runtime testing procedure described in §4.1 is over-

all effective for most devices; however, when applying this
methodology, we did encounter some special cases in which
the normal routine fails to give useful results even though
we can successfully allocate arbitrary memory buffers from
a certain heap. We describe them below.

Failure to identify any DoS vulnerabilities. For cer-
tain heaps with limited size on some devices, even after we
occupy all of its free space, no issues can be observed. After
looking into these cases, we conclude two main reasons for
this: 1) Some heaps will be rarely, if not never, used by their
host devices. For instance, we cannot observe any utiliza-
tion of “kmalloc” heap, whose type is SYSTEM CONTIG,
on Nexus 6P in our experiments. Besides, there exists other
heaps that may be used in only the early stage of system
booting, such as “pil” heaps on some devices that are used
to load certain firmware images during the boot process.

Vulnerabilities depending on proper timing. In
some cases, we can successfully perform DoS attacks against
certain system functionalities by exhausting specific heaps,
but not at arbitrary points in time. In the case of Samsung
S6’s fingerprint authentication service, a CARVEOUT heap
named “secdma” is used to fulfill its task. If a malicious app
occupies the entire heap ahead of time, then fingerprint ser-
vice will stop functioning. The challenge is that the service
itself typically occupies the heap when the screen is locked
and releases it only when the screen is unlocked. Generally
speaking, our testing methodology may not always be able
to catch the correct timing; however, such vulnerabilities do
exist and are simply harder to trigger. Manual investiga-
tions are performed to catch these cases as reported later in
§4.1.

5.3 Static Taint Analysis for Dirty Pages
Next, we evaluate the effectiveness of the static taint anal-

ysis described in §4.2.1, using Nexus 6P as a case study. The
source code we analyze is from kernel version 3.10.73. In
total, it takes about 9.5 hours for the tool to analyze the
memory allocation functions for 4 ION heap types — SYS-
TEM, SYSTEM CONTIG, CMA, and CARVEOUT — on a

1. ion_cma_allocate

2. dma_alloc_writecombine 2. dma_alloc_nonconsistent

4. arm64_swiotlb_alloc_coherent 4. dma_alloc_from_coherent
5. memset

3. dma_alloc_attrs

...
7. apply_to_pud_range
...
11. pmd_alloc_one
12. get_zeroed_page

5. dma_alloc_from_contiguous
...

�������

�
�����������������
�����
�������

Figure 5: Call chains of interest for CMA heap type

server with Intel Xeon E5-2640 V2 CPU and 64GB physical
memory. The analyzed LOC is over 10,000. We omit the
remaining heap types that fall in two categories: 1) the ones
that never have any instances, e.g., REMOVED type; 2) the
ones that deny any mmap() requests from user space, e.g.,
SECURE CMA, indicating that it is impossible to access
the memory although they may contain dirty pages.

We summarize the result of the tool on Nexus 6P’s kernel
source code in Table 3. We output the number of taint paths
as well as the corresponding unique call chains (the number
in brackets indicates the number of unique call chains). We
confirm the true positives, false positives, and false negatives
by manually analyzing the source code. The false positives
are relatively easy to deal with, as a developer or researcher
can quickly inspect the output path (or even the function
call chain) to confirm them (we will explain the FP cases of
CMA heap later). For false negatives, it is more problematic
as we may not even realize this and incorrectly report that
there are no zeroing operations while in fact there are. One
potential source of false negatives is the incomplete set of
sink functions considered, which include the common func-
tions such as memset() and bzero() so far. However in our
evaluation, we found that memset() and its wrappers are the
only used sinks.

CMA heap type. We first discuss the false positive
taint paths in CMA heap. We group such paths into call
chains as shown in Figure 5 (labelled “FP path”). When
we look at the results, the taint analysis in fact correctly
outputs the taint result according to the source and sink
definition. Unfortunately, in some cases, the allocation of
auxiliary data structures, such as page table entries, is also
dependent on the size of requested buffer. Specifically, the
auxiliary data here is the page table entries that are creat-
ed and subsequently zeroed. In other words, the source
(“size” parameter) indeed propagated to the sink (“zeroing”

1. ion_system_heap_allocate

2. msm_ion_heap_pages_zero2. alloc_largest_available
3. alloc_buffer_page
...
5. ion_page_pool_alloc_pages

TP Path

6. alloc_pages

TP Path
6. msm_ion_heap_high_order_page_zero

TP Path

6. __free_pages

FP Path

bad_page
...
dump_mem
memset

5 chains

get_page_from_freelist
...
get_zeroed_page

6 chains

Figure 6: Call chains of interest for SYSTEM heap type

operation); the zeroing operation is simply not applied to
the returned buffer. Fortunately, by simply looking at the
function names involved in the FP call chain in Figure 5,
it is easy to conclude that this call chain is for allocating
pages to hold page table entries given the term “pmd” (page
middle directory).

According to our evaluation, there do exist true posi-
tive paths that result in zeroed buffers. The cases are al-
so shown in Figure 5. Now the question is whether there
still exist unzeroed paths other than the zeroed path. As
stated previously in §4.2.1, we walk backwards along the
true positive call chains and look for branches that may
invoke other memory allocation functions that do not be-
long to any taint call chain. As shown in Figure 5, s-
tarting from dma_alloc_from_coherent(), we walk back-
wards to its caller dma_alloc_attrs() and enumerate al-
l of its callees. By looking at the names of the callees,
we locate arm64_swiotlb_alloc_coherent(), which also
takes in a tainted parameter “size”, and appears to be
a memory allocation function. We then cross reference
the function name with our taint analysis results. In
this case, we found no taint call chains that involve ar-

m64_swiotlb_alloc_coherent(), which indicates the possi-
bility of a path where the allocated memory is unzeroed. Up-
on reading the code, we realize that the code tries to allocate
memory through dma_alloc_from_coherent() first, and fall
back to arm64_swiotlb_alloc_coherent() only when an er-
ror is returned earlier. During our runtime testing on Nexus
6P, dma_alloc_from_coherent() appears to be failing al-
l the time and therefore we are able to successfully obtain
dirty pages in CMA heap.

SYSTEM heap type. SYSTEM heap is complex and
involves many paths leading to zero operation, a simplified
call graph is shown in Figure 6. All 5 FP call chains are
introduced by the function __free_pages(), from which an
error branch is eventually triggered which invokes memset().
When we look at the issue closely, it all started from the
function alloc_largest_available(), whose key logic is
depicted in Figure 7. Upon close inspection, there exists a
control dependency (implicit flow) that caused the problem.
The function essentially runs in a loop to identify the closest
round-up of the request memory size in the power of 2, and
use the round-up value to allocate memory. Here the con-
stant array order[i] simply pre-defines all possible round-up
values. Note that the size parameter (taint source) is com-

1 struct page_info *alloc_largest_available(…,size,…){
2 for (i = 0; i < num_orders; i++) {
3 if (size < order_to_size(orders[i]))
4 continue;
5 page = alloc_buffer_page(…,orders[i],...);
6 }
7 }

Figure 7: Key logic for alloc largest available()

pared against the round-up value orders[i], which results
in a control dependency. The variable order[i] itself is not
tainted as it is a read-only constant. When it is passed over
to alloc_buffer_page(), we lose track of the taint. In reali-
ty, order[i] is semantically derived from the taint source size
(round-up of size), however, traditional taint propagation
rules are unable to catch this case. Therefore, we have to
record all function invocations after the control dependency
and report whenever a sink (e.g., memset()) is encountered,
regardless of whether its parameters are tainted (we had to
implicitly assume that all parameters of the sink is tainted).

Of course, in practice, such a coarse-grained control taint
propagation rule is likely going to introduce false positives.
It is inherently a challenge to deal with control taint propa-
gation, as widely acknowledged in previous studies [13]. As
an alternative solution, a developer can resolve the control
taint manually. In this case, since we know orders[i] is es-
sentially derived from the taint source size, one can simply
taint orders[i] directly to avoid the false positives.

Aside from the false positives, we wish to point out
an interesting observation. Figure 6 appears to suggest
that there are multiple paths to zero the allocated buffer
and there exists only one path that actually allocates
memory. Specifically, both msm_ion_heap_pages_zero()

and msm_ion_heap_high_order_page_zero() are simply ze-
roing a buffer without allocating any memory. On-
ly alloc_pages() is allocating memory (as well as ze-
roing the buffer afterwards). Therefore, one may think
whether the buffer is zeroed for more than one time.
However, upon a closer look, we realize that two of
the sinks are not really performing the zeroing opera-
tions. Both msm_ion_heap_high_order_page_zero() and
alloc_pages() depend on a flag “GFP ZERO”. Only if it is
set will they zero the buffer. In this particular case, the flag
is not set for either function to avoid repeated zeroing that
can waste CPU cycles. It is interesting to see how complex
the memory allocation can be and how hard the developers
need to try to ensure security as well as performance. This
once again shows the benefit of a program analysis tool to
help developers make correct implementation decisions.

6. CASE STUDY
In this section, we will demonstrate our exploitation of

ION related vulnerabilities on a few latest and representa-
tive Android devices including flagship models from main-
stream manufactures with newest Android system and ker-
nel. It is worth noting that although the vulnerabilities usu-
ally manifest themselves differently on various devices due
to customization, the underlying cause stems from the same
design and implementation of ION as we outlined earlier.

6.1 DoS against Heaps of Fixed Size
Disable fingerprint authentication service on (mul-

tiple devices). On Nexus 6P, if one occupies enough free

space of “qsecom” heap, which is of CMA type, the de-
vice’s fingerprint authentication functionality will be effec-
tively disabled. When a user tries to unlock the device with
his/her finger, the system will show an error message “fin-
gerprint hardware is unavailable”. Similar attacks can also
be performed on all Android devices using MSM platform,
including Samsung Galaxy S7 and S6.

Disable audio service (multiple devices). On many
MSM platform Android devices there exists an“audio”heap,
with either CARVEOUT type or CMA type. If we exhaust
this heap’s free memory, the system will be unable to pro-
duce any sound, including ringtones. Affected devices, such
as Nexus 6P and OPPO R7s, will be unable to notify users
or play any music under this attack. The sound playback
is the responsibility of a system service named “mediaserv-
er”, which heavily depends on the “audio” heap as its buffer
provider on MSM-based Android devices.

System crash on Huawei Mate 8. Huawei Mate 8 is
shipped with a CARVEOUT heap named “carveout-heap”.
We can request memory buffers from it and when we claim
and keep a big enough buffer, the device will crash directly.
This CARVEOUT heap has only a fixed size, and is used by
the critical system framebuffer service that is responsible for
the screen display and refresh. When we occupy too much
resource in the heap, the critical system service will fail to
work and eventually cause the whole system to crash.

6.2 DoS against Heaps of Unlimited Size
System level DoS (multiple devices). On virtually all

devices, there is a SYSTEM heap usually named “system”.
If we allocate a large enough memory buffer (usually around
or more than 1GB) from there, the system will freeze and
many running background services will be killed at the same
time, including music playback service and push notification
service.

As mentioned previously in §3.1, SYSTEM heaps will re-
quest new pages from the basic buddy allocator when need-
ed, so the available memory for them is equal to that of
the whole system. Surprisingly, there is one important dif-
ference between allocating memory from the “system” heap
and simply using functions like malloc(): the memory from
the latter will be considered “owned” by the calling process,
whereas the buffers from the former is actually allocated and
“owned”by the ION driver; what the requesting process get-
s is only a handle to the buffer. Since Android is equipped
with a low memory killer [2] which is responsible for re-
leasing memory by killing processes when it detects that the
system is currently low on memory, when a process allocates
too much memory via interfaces like malloc(), it will gain a
high priority in the “killing list” since the killer thinks that
it owns too much, the result is that it will be killed soon
and the system will thus recover quickly. However, when al-
locating a large amount of memory from the “system” heap,
the killer will not consider our process as a main memory
holder; instead, it will try to kill other innocent processes
such as the push notification service.

6.3 DoS via Protected Memory Access
System crash (multiple MSM platform devices).

There is a CMA heap named “pil” on Nexus 6P and many
other Android devices that use MSM platforms, from which
a program can request memory buffers. By trying to ac-
cess the allocated buffer, the whole Android operating sys-

tem will crash and the device will reboot immediately. The
name “pil” is short for “peripheral loader”; it is used to load
peripheral devices’ firmware images when kernel boots. S-
ince it is important to guarantee firmware images’ integrity,
the memory region of this heap will be protected by Trust-
Zone, which is an SoC security extension providing Trusted
Execution Environment (TEE) for sensitive operations with
physically isolated memory and CPU mode [4]. Thus, any
access to this protected memory region from normal world
will cause the system to raise a protection exception, which
usually leads to a system reboot.

The problem here is that a user can allocate buffers from
“pil” heap even though it is never supposed to be exposed to
user space. Unfortunately, as we highlight, the unified inter-
face of ION grants a program access to virtually all heaps.
In addition, the buffer sharing capability allows a program
to further access the allocated buffer. Either reset the pro-
tection before the user can access the allocated buffers or
simply deny users’ memory requests for “pil” heap can solve
the problem; however, neither is done on the devices.

6.4 Information Leakage
According to our analysis, there exist three different type-

s of information leakage vulnerabilities, classified based on
ION heap types. They are CARVEOUT, CMA and SYS-
TEM CONTIG respectively, all of which do not zero the
buffers before returning them to user space. This series of
vulnerabilities can cause sensitive information leakage from
both system and user applications, enabling an attacker to
easily breach user privacy such as getting access to email
content, bank accounts, and passwords.

Camera data leakage on Samsung Galaxy S7.
There exists a CARVEOUT heap named “camera” in Sam-
sung’s newest flagship phone model S7. We can obtain image
data captured by the phone’s camera without any permis-
sion with the following steps:

(1) Open the system “camera” application, or third-party
camera applications which also need to use the system cam-
era hardware. Then capture some images with the applica-
tion, note that it is unnecessary to actually take a picture
— simply seeing the preview on the screen is enough.

(2) Close the camera application and then dump the whole
“camera” heap by having any app allocating buffers from
it and read their content, which contains the image data
captured by the system camera, including the previews. We
confirm this by byte-to-byte comparison between the picture
(taken by the camera) and the memory content of the ION
buffers.

As shown in Table 1, a CARVEOUT heap will manage a
fixed physically contiguous memory region which is reserved
by kernel at boot time for special purposes (e.g., to sat-
isfy the requirement of certain hardware devices). On S7,
“camera” is such a heap that serves as a data buffer used by
the system camera service. The camera device must have
the requirement of physically continuous memory in order
to perform DMA (and possibly other) operations. When
users are running a camera app, the camera device should
be populating the image data into the buffer allocated from
the “camera” heap, which will then be released when users
exit the app. Thus, an attacker can now re-allocate buffers
from the “camera” heap to obtain the dirty buffer.

In our research, this kind of problems for CARVEOUT
heaps widely exist on multiple Android devices, enabling

attackers to steal sensitive data from various system services.
For example, the audio data can be leaked via “audio” heap
on Nexus 6P and many other MSM-based Android devices
in the same way.

Live memory dump of running apps (multiple de-
vices). “Qsecom” heap on Nexus 6P is of CMA type, which
is used mainly by TrustZone related services on MSM plat-
forms. Different from CARVEOUT heaps that are used ex-
clusively by certain system services, with the CMA heap we
can obtain various kinds of sensitive information, including
but not limited to Gmail contents, Chase bank transactions
and wi-fi passwords, from “live memory” of running apps.
This is achieved by the following three steps:

(1) Drain free system memory by allocating as much mem-
ory as we can from either normal user space interfaces like
malloc() or ION SYSTEM heaps as shown in §1. Note that
the buffer allocation should not cause observable slowdown
to the system to avoid alerting the users.

(2) Run any victim app (e.g., Gmail) normally which will
naturally produce sensitive data in memory.

(3) Dump the content of“qsecom”heap, which will contain
sensitive information as mentioned above.

The root cause is as follows: while both CARVEOUT
heaps and CMA heaps manage some pre-reserved contigu-
ous memory regions dedicated for certain system services,
a major difference is that CARVEOUT memory regions are
set aside at system boot time and invisible to kernel memo-
ry manager after the system boots; thus no other processes
can reuse these regions — even when they are free — using
normal memory allocation interfaces (e.g., malloc()) oth-
er than ION. Effectively, the CARVEOUT memory is stolen
from the system, which guarantees the availability of memo-
ry buffers to the corresponding system service and hardware
device (e.g., camera) In contrast, CMA heaps expose their
reserved memory regions to kernel memory manager (e.g.,
Linux buddy allocator) and thus allow other processes to u-
tilize these regions through standard interfaces such as mal-
loc(), when there is no sufficient memory that can be found
elsewhere (attack step 1 ensures this condition). However,
to allow system services to function, the memory allocated
from CMA heap can be reclaimed on demand as soon as the
system service asks for them (which is how attack step 3
can successfully dump live memory of other running apps).
Prior to the memory being reclaimed, the data generated
on the CMA heap will be copied elsewhere and page tables
will be updated to reflect the change. As we can see, the
design of CMA heap allows a better utilization of memory
resources at the cost of a potentially longer latency when
memory is allocated from CMA heap [23].

The CMA attack is considered extremely dangerous since
it effectively allows a malicious app to dump the live memory
of any other apps. Equipped with the capability of know-
ing which apps run in the foreground (through attacks such
as [14]), it can effectively be tailored to reliably extract any
app-specific information. One may even be able to recon-
struct the app GUIs by taking multiple snapshots of the
memory dumps; This very attack was recently achieved by
forensically dumping the entire physical memory [24]. Final-
ly, even though we have not attempted, there is no reason
to believe that it is impossible to extract crypto keys used
by apps and the system.

System-wide information leakage on Mate 8 The
“system-contig” heap on Huawei Mate 8 is assigned the type

“SYSTEM CONTIG”. With this heap we can get various
sensitive information similar to what we can get with CMA
heap; they include Gmail content, Chrome browsing history
and html data of previously loaded web pages. Besides data
leaked from user applications, it is also possible to learn
information from the kernel with such a heap type. The
attack process is sketched as below:

(1) Open arbitrary apps and operate normally, then exit
(which means that memory will be released by the apps).

(2) Allocate as much memory as possible from “system-
contig” heap and record their content, which will include
significant sensitive information.

Since SYSTEM CONTIG heap draws pages directly from
the basic system memory manager (i.e., buddy allocator),
whoever returns pages to the system without zeroing them
can leak data to the attacker. This includes any application
or kernel data such as passwords, credit cards, and secret
keys. This vulnerability is very much similar to the one in
CMA heap except that the opportunity arises only when the
memory is freed by other applications.

7. DEFENSE DISCUSSION
The fundamental problems with ION stem from its two

design goals, unified interface and buffer sharing across lay-
ers, as we highlight throughout the paper. Since they are
not really simple implementation errors, they require a more
systematic investigation. One may consider the vulnerabili-
ty of unzeroed buffers simply a glaring error; we argue that
it actually is a much more complex problem than what it
appears. As shown in §3.2.1 and §5, the unzeroed buffers
are introduced due to several complex reasons:

1) Kernel memory allocation functions have complex be-
haviors. Many of them never need to be exposed to user
space prior to ION’s cross-layer buffer sharing capability. It
is hard to make the correct assumption on whether a par-
ticular function will zero the returned buffer or not.

2) Customization of ION can lead to a drastically different
implementation from the common branch in AOSP. In our
analysis of Nexus 6P, we find that its ION implementation
follows the one customized by Qualcomm (due to the fact
that Nexus 6P uses the Qualcomm SoC). Interestingly, we
note that the Qualcomm kernel source was forked prior to
AOSP common branch fixing the vulnerability of unzeroed
buffers in CMA heap. Unfortunately, once the Qualcomm
source tree is forked, it no longer merges the patches applied
to AOSP common branch. This is demonstrated by the fact
that even the Android 7.0 preview on Nexus 6P still has
unzeroed buffer vulnerabilities.

Therefore, we believe the static taint analysis tool can
be effective in assisting developers with the insight into the
buffer zeroing behaviors and help them navigate the complex
kernel functions.

However, even when the buffer zeroing problem is re-
solved. The DoS vulnerabilities introduced by ION’s unified
interface design still remain. Fundamentally, the unified in-
terface hurts security as it supports only coarse-grained ac-
cess control (through file permission of /dev/ion) — a user
has access to either all heaps or none. A fine-grained access
control is necessary to solve the problem. For instance, a
third-party app should not be able to access the heap used
by fingerprint service; we have not seen a case where such
heaps are accessed by any other process. Due to the fact
that ION is a complex system and the entire software stack

is involved (from applications, system services, and kernel
drivers), it is important that the changes minimize side ef-
fects such as backward compatibility and performance hit.
In addition, we should avoid adding new security mecha-
nisms to the kernel and instead try to piggyback on existing
mechanisms offered by Android and Linux if possible.

One straightforward solution can be adding the fine-
grained access control to the kernel to govern how much
memory each user can allocate (based on uid/gid). This
solution maintains backward-compatibility to existing ap-
plications and system services (and can be implemented ef-
ficiently). However, the downside is that the kernel need-
s to maintain an access control list for all (uid, ion heap)
pairs that does not fit in any existing Android or Linux
security mechanism. Even SeAndroid/SeLinux cannot ex-
press such a security policy, as it will need to be able to
interpret the argument struct ion_allocation_data * of
ioctl() to extract the heap information. Furthermore, the
additional access control list needs to be changed every time
when customization occurs as heap types and instances may
change.

Alternatively, one can place the access control enforce-
ment at the user space. This requires revoking direct access
to /dev/ion from third-party apps and allowing access to
only system services. The idea is that apps will need to go
through system services to allocate memory from ION heap-
s, in which case the system services can enforce the access
control policy. For instance, if the policy says that a regular
app can allocate memory from SYSTEM heap for graphics
processing of up to 20MB, it will have to send the request
to “mediaserver” (or whichever process that is responsible
for managing graphics buffers). The “meidaserver” can then
check if the requested memory is indeed in SYSTEM heap
(not any other heap). Further, it will keep track of how much
memory has been used by the user. This solution requires
grouping all system service uids (e.g., media) into an “ion”
group so that the file permission of /dev/ion can be changed
to 660 (rw-rw----) where the user owner is system and
group owner is ion. Now an app needs to go through system
services for memory allocation in ION heaps. Since most
apps only need to request memory for graphics buffers, the
changes should involve only the app-side libraries that are
responsible for allocating graphics buffers (that previously
interacts with /dev/ion directly) and a single system service
(e.g., “mediaserver”). Other heaps are automatically inac-
cessible to third-party apps. This does introduce the over-
head of an additional IPC round trip for each ION memory
allocation. Note that even though the memory allocation
goes through system services, the returned memory pages
still need to be zeroed. With this extra layer of indirection,
the zero operation can in fact be performed by the system
service itself before sending the file descriptor over to the
app that requested the memory.

Besides the challenge in maintaining backward-
compatibility, another downside of the alternative design
is that once a process capable of accessing /dev/ion is
compromised, it can still launch the DoS attacks against
other services. That is because of the access control
not fine-grained enough to differentiate different system
services. To truly achieve fine-grained access control, each
system service needs to run with a different uid which the
kernel can use to enforce the access control properly (as is
done in the first solution).

In summary, we show two potential solutions that have
different tradeoffs in the following aspects: backward-
compatibility, performance, and avoid introducing new se-
curity mechanisms in the kernel.

8. RELATED WORK
Android customization and related security issues.

Android customization is known to introduce new security
vulnerabilities across layers. At the application layer, pre-
loaded apps have been shown to require more permissions
than needed [27]. At the framework layer, customized sys-
tem services have been shown to have missing permission
checks [25]. At the system layer, devices files are shown to
have weak permissions that allow third-party apps to direct-
ly manipulate device drivers and perform privileged opera-
tions [29]. In addition, devices drivers also introduce vulner-
abilities that can directly cause root exploits [28]. A recent
study has shown that by analyzing configuration differences
across customized Android ROMs, many security flaws can
be reveled in all these layers [10]. Our study is a systematic
analysis of an overlooked system component, Android ION,
that is customizable by SoC and smartphone vendors.

Android DoS vulnerabilities. DoS attacks (e.g., soft
reboot) against the Android system services have been
demonstrated using different techniques, e.g., by issuing tar-
geted and repeated requests to the system services [19], or
forking an unlimited number of processes exploiting a weak
local socket permission of the Zygote process [11]. In addi-
tion, a number of other vulnerabilities such as Null pointer
and integer overflow have been reported recently [6, 3]. All
of the DoS attacks can cause only the entire Android frame-
work or system to reboot. Our DoS attacks exploit a new
class of vulnerabilities that exist due to the lack of access
control and memory usage limit in various ION heaps. Any
services or apps that require memory from ION can be tar-
geted. Due to the fact that some heaps are mostly used by
one or two services, the DoS impact can be controlled to
affect only those services; this has not been reported before.

Unzeroed/Dirty memory. Dirty memory can leak crit-
ical data to a malicious application, and there are different
underlying causes. For instance, recently it has been shown
that newly allocated GPU memory pages are not zeroed,
and may contain data rendered by other applications [20].
In Linux, memory obtained by malloc() will automatically
be zeroed by the underlying OS if a physical page has been
previously used by a different process [15]. However, ker-
nel memory allocation functions like kmalloc() do not get
zeroed as they are intended for kernel-space use only; this
has obvious performance benefits. Unfortunately, the intro-
duction of ION and its user-space and kernel-space buffer
sharing capability effectively breaks the assumption.

Static analysis tools on Android. Static taint analysis
is one of the most popular techniques used to analyze and vet
Android apps [22, 21, 12, 16, 17, 26]. For instance, Chex [22]
can statically analyze the byte code of Android apps for
component hijacking vulnerabilities. AAPL [21] compares
the the produced information flows for apps in similar cate-
gories (e.g., news) to identify suspicious apps with excessive
information flows compared to others. Besides taint anal-
ysis, many other static analysis tools are built to discover
vulnerabilities. Woodpecker [18] analyzes apps to look for
capability leaks (e.g., through Intent) that allow confused-
deputy attacks. At the system layer, Kratos [25] analyzes

Android framework and look for inconsistent security policy
enforcements. Even though static taint analysis has been
used widely to analyze apps, it is rarely used to analyze the
Android/Linux kernel. Our work applies static taint anal-
ysis in a novel setting to identify unzeroed memory pages
allocated and returned to user space through ION.

9. CONCLUSION
In this paper, we report multiple vulnerabilities of the ION

memory management system that can lead to either DoS or
sensitive information leakage on virtually all Android de-
vices to date. We build a novel static taint analysis tool
to uncover the unzeroed ION heap vulnerabilities systemat-
ically. To demonstrate the seriousness of the vulnerabilities,
we build exploits against several latest Android devices run-
ning latest Android operating systems, including Nexus 6P,
Samsung Galaxy S7, and Huawei Mate 8 that run Android
6.0 and even 7.0 preview. In addition, we analyze and digest
the root causes of the vulnerabilities in depth. Finally, we
outline the defense strategies that have different tradeoffs
which can shed light on future design of such a large and
complex memory management system.

10. REFERENCES
[1] https://sites.google.com/a/androidionhackdemo.net/

androidionhackdemo/.

[2] Android Low Memory Killer. https://android.
googlesource.com/kernel/common.git/+/android-3.4/
drivers/staging/android/lowmemorykiller.c.

[3] Android MediaServer Bug Traps Phones in Endless
Reboots. http://blog.trendmicro.com/
trendlabs-security-intelligence/
android-mediaserver-bug-traps-phones-in-endless-reboots/.

[4] Arm TrustZone Technology. http://www.arm.com/
products/processors/technologies/trustzone/.

[5] Device Tree. https://www.kernel.org/doc/
Documentation/devicetree/usage-model.txt.

[6] Integer Overflow leading to Heap Corruption while
Unflattening GraphicBuffer.
http://seclists.org/fulldisclosure/2015/Mar/63.

[7] STAC - Static Taint Analysis for C.
http://code.google.com/p/tanalysis/.

[8] The Android ION memory allocator.
https://lwn.net/Articles/480055/, 2012.

[9] Patch: sparc32: dma alloc coherent must honour
GFP ZERO.
https://patchwork.ozlabs.org/patch/386217/, 2014.

[10] Y. Aafer, X. Zhang, and W. Du. Harvesting
Inconsistent Security Configurations in Custom
Android ROMs via Differential Analysis. In USENIX
SECURITY, 2016.

[11] A. ARMANDO, A. MERLO, M. MIGLIARDI, , and
L. VERDERAME. Would You Mind Forking this
Process? A Denial of Service Attack on Android (and
Some Countermeasures). In Information S&P
Research, 2016.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise Context, Flow, Field,
Object-Sensitive and Lifecycle-Aware Taint Analysis
for Android Apps. In PLDI, 2014.

[13] L. Cavallaro, P. Saxena, and R. Sekar. On the Limits
of Information Flow Techniques for Malware Analysis
and Containment. In DIMVA, 2008.

[14] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into
Your App Without Actually Seeing It: UI State
Inference and Novel Android Attacks. In Proc. of
USENIX Security, 2014.

[15] N. Douglas. User Mode Memory Page Allocation: A
Silver Bullet For Memory Allocation? Technical
report, 2011.

[16] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: Automatically Detecting Potential
Privacy Leaks in Android Applications on a Large
Scale. In TRUST, 2012.

[17] M. I. Gordon, D. Kim, J. Perkins, L. Gilham,
N. Nguyen, and M. Rinard. Information-flow Analysis
of Android Applications in DroidSafe. In NDSS, 2015.

[18] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic Detection of Capability Leaks in Stock
Android Smartphones. In NDSS, 2012.

[19] H. Huang, S. Zhu, K. Chen, and P. Liu. From System
Services Freezing to System Server Shutdown in
Android: All You Need Is a Loop in an App. In CCS,
2015.

[20] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing
Webpages Rendered on Your Browser by Exploiting
GPU Vulnerabilities. In Oakland, 2014.

[21] K. Lu, Z. Li, V. Kemerlis, Z. Wu, L. Lu, C. Zheng,
Z. Qian, W. Lee, and G. Jiang. Checking More and
Alerting Less: Detecting Privacy Leakages via
Enhanced Data-flow Analysis and Peer Voting. In
NDSS, 2015.

[22] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX:
Statically Vetting Android Apps for Component
Hijacking Vulnerabilities. In CCS, 2012.

[23] M. Nazarewicz. A Deep Dive into CMA.
https://lwn.net/Articles/486301/.

[24] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu. GUITAR: Piecing Together Android App GUIs
from Memory Images. In CCS, 2015.

[25] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M. Mao.
Kratos: Discovering Inconsistent Security Policy
Enforcement in the Android Framework. In NDSS,
2016.

[26] F. Wei, S. Roy, X. Ou, et al. Amandroid: A Precise
and General Inter-Component Data Flow Analysis
Framework for Security Vetting of Android Apps. In
CCS, 2014.

[27] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The
Impact of Vendor Customizations on Android
Security. In CCS, 2013.

[28] H. Zhang, D. She, and Z. Qian. Android Root and Its
Providers: A Double-Edged Sword. In CCS, 2015.

[29] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang.
The Peril of Fragmentation: Security Hazards in
Android Device Driver Customizations. In Oakland,
2014.

