DEFINITIONS \& NOTATION

JAMIE SIMPSON

Below are some common definitions associated with combinatorics on words. If you're composing a problem, you can assume your readers know them already.

A word or string is a sequence of symbols taken from a set of symbols called an alphabet A. The set of all such words is A^{*}. The number of occurrences of symbols in the word w is its length, written $|w|$. The number of occurrences of a letter a in a word is written $|w|_{a}$. If the alphabet A is an ordered set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, then the Parikh vector of w is $\left[|w|_{a_{1}}|w|_{a_{2}} \ldots|w|_{a_{k}}\right]$. A word containing no symbols is the empty word, written ε, and we write $A^{+}=A^{*}-\{\varepsilon\}$. If $w=x y z$ for words x, y and z then x is a prefix of w, z is a suffix of w and x, y and z are all factors (subwords, substrings) of w. A factor is proper if it is not the whole word. Proper prefix and proper suffix are defined in the same way. A factor which is both a prefix and a suffix of w is a border of w. We write $x[i]$ for the i th letter in w and $x[i . . j]$ for the factor beginning with the i th letter and ending with the j th. A word of the form $w=x x x \cdots x$, with x a factor appearing n times, is written $w=x^{n}$ and is called a power of x. If $n=2$ then x^{n} is a square and if $n=3$ it's a cube. A word that is not a power is primitive. A positive integer p is a period of a word w if $w[i]=w[i+p]$ for all $1 \leq i \leq|w|-p$. The shortest period of a word is sometimes called the period. A periodic factor of a word is a periodicity. If a periodicity has period p and length n then its exponent is n / p. The reverse of a word is the word written backwards, thus the reverse of $x[1 . . n]$ is $x[n] x[n-1] \cdots x[2] x[1]$. A word that equals its reverse is a palindrome. If $w=u v$ then $v u$ is a conjugate or rotation of w. If $|u|=j$ then $v u$ is the j th rotation of w. A word, necessarily primitive, that is lexicographically less than any of its conjugates is a Lyndon word.

An infinite word w is periodic if $w[i+p]=w[i]$ for all $i \geq 1$. It is eventually periodic if $w[i+p]=w[i]$ holds for all i greater than some number k (which may be 0). An infinite word that is not eventually periodic is aperiodic. The complexity of a word w is a function $C(w, n)$
where $C(w, n)$ is the number of distinct factors of length n in the word. If $C(w, n)=n+1$ for all positive integers n then the (necessarily binary) word is Sturmian. Sturmian words may be defined in many equivalent ways. A factor u of a word w is called right (respectively left) special if there exist two distinct letters a and b such that $u a$ and $u b$ (respectively $a u$ and $b u$) are factors of w. An infinite word w is recurrent if every factor occurring in the word occurs infinitely often. The word is uniformly recurrent if for every factor u there exists an integer k such that every factor of w of length k contains at least one occurrence of u.

