

Efficient Sampling of SAT solutions for Testing (ICSE '18)

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach and Koushik Sen (EECS Department, UC Berkeley)

Background

- In software testing, generating a lot random solutions to the constraints is a important problem.
 - Conventional symbolic execution and dynamic symbolic execution uses SMT solver to generate ONE solution for the path constraint.
 - Not very scalable due to path explosion
 - Generating multiple solutions to constraint can test multiple paths having the same path prefix

Background: SAT problem

- SAT problem: determining if there exists an assignment (of variables) which satisfies a boolean formula. (First problem proven to be NP-complete)
- How to solve?
 - DPLL algorithms (introduced in 60s, still the basis for modern solvers)
 - CNF form ($(a \vee \neg b) \wedge (\neg a \vee b)$) One solution: [1,1]
 - Backtracking: Assign true/false for one variable, and then solve the sub-problems (branching/splitting).
 - Pruning: Unit propagation/Pure literal elimination
 - Heuristics: Which variable to try first? (e.g. the variable that has the most occurrences)
 - Non-DPLL algorithms
 - Stochastic Local Search (WalkSAT)
 - Pick a random assignment, then try to flip one variable.

Background: Translate SMT problem to SAT problem

- A SMT problem asks to decide if a logic-formula (background theories expressed in first-order logic) can be satisfied.
- Eager approach - encoding and translating (bit-blasting)
 - Example $(x \neq 0) \wedge (y \mid 2 = z)$
 - Let $x=[b1,b2]$, $y=[b3,b4]$, $z=[b5,b6]$
 - $b1 \vee b2, (b3 = 1) \wedge (b4 = b6)$
 - CNF form: $(b1 \vee b2) \wedge (b3) \wedge (b4 \vee \neg b6) \wedge (\neg b4 \vee b6)$
- Lazy approach
 - First asks SAT for an assignment and then checks for consistency.
 - Example: $(x > 0 \vee y = 100) \wedge (x < 3 \vee y = 200)$
 - SAT solver assigns [False, False] to $(x > 0)$, $(x < 3)$. Inconsistency!
 - [True, True], [True, False], [False, True] all are satisfiable assignments.

Problem: how to get multiple assignments quickly and uniformly

- Uniformity:
 - Given the set of all satisfiable assignments R , the solutions should be uniformly sampled from R .
- Benefits of uniformity:
 - Ensure the diversity the inputs, exploring more program states.

Related works (baselines):

- Based on universal hashing (e.g. UniGen)
 - Idea: select a set of universal hashing functions to uniformly partition the solution sparse and then plug the hash function (XOR of boolean variables) to the constraints (e.g. original constraints \wedge hash function)
 - Strong uniformity guarantee.
 - Bad performance (for each sampling, needs to make a call to SAT)
- SearchTreeSampler
 - Also uses SAT solver as a black-box
 - Maintain a tree of pseudo-solutions. Level i in the tree stores partial-solutions with the first i boolean variables assigned.
 - Recursively build the tree
 - Sample a pseudo-solutions uniformly from level i , and then call SAT to enumerate all satisfiable pseudo-solutions in level $i+1$ (e.g. original constraints \wedge pseudo-solution of i \wedge new probing bits in level $i+1$)
- Others: treat SAT solver as white boxes

Quick Sampler Algorithm

- Overall idea:
 - Sample a random solution
 - Explore the neighbors (delta-mutations)
 - Combining two mutations
- Intuition:
 - δ_a and δ_b consist of a minimal set of bits which can be flipped while still preserving the satisfiability of the formula.
 - So the bits in δ_a are likely to be closely related to each other by some clauses in the formula.
 - It is likely that those clauses would still be satisfied in $\sigma \oplus (\delta_a \vee \delta_b)$, where we flip all the bits from δ_a in addition to the bits from δ_b .

$$\begin{aligned}\sigma &: 0 1 0 0 0 1 0 1 1 0 1 1 \\ \delta_a &: \textcolor{red}{1} 0 0 0 \textcolor{red}{1} \textcolor{red}{1} 0 0 0 0 0 0 \\ \sigma_a = \sigma \oplus \delta_a &: \textcolor{blue}{1} 1 0 0 \textcolor{blue}{1} 0 0 1 1 0 1 1 \\ \delta_b &: 0 \textcolor{red}{1} 0 0 0 \textcolor{red}{1} \textcolor{red}{1} 0 \textcolor{red}{1} 0 0 0 \\ \sigma_b = \sigma \oplus \delta_b &: 0 \textcolor{blue}{0} 0 0 0 0 \textcolor{blue}{1} 1 0 0 1 1 \\ (\delta_a \vee \delta_b) &: \textcolor{red}{1} 1 0 0 \textcolor{red}{1} \textcolor{red}{1} \textcolor{red}{1} 0 \textcolor{red}{1} 0 0 0 \\ \tilde{\sigma} = \sigma \oplus (\delta_a \vee \delta_b) &: \textcolor{blue}{1} 0 0 0 \textcolor{blue}{1} 0 \textcolor{blue}{1} 1 0 0 1 1\end{aligned}$$

Figure 1: Combining two mutations.

Implementation

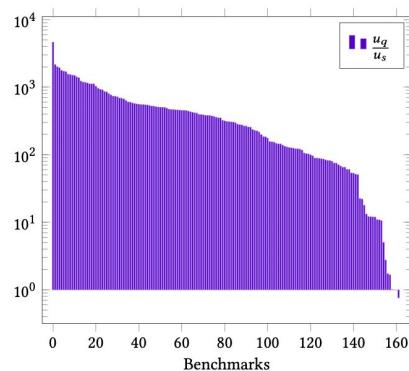
- Use SAT solver as an oracle, to answer MAX-SAT queries
- MAX-SAT query
 - Given a set of hard constraints and a set of soft constraints, can you satisfy all the hard constraints and maximum possible number of soft constraints.
- How to find a random solution?
 - Randomly assign boolean variables.
 - Then call MAX-SAT(hard, soft),
 - where hard is the original constraints,
 - soft is that the **assignment for each variable = randomly assigned one**
- How to find a delta?
 - For one solution, flip one bit of it
 - Then call MAX-SAT(hard, soft)
 - where hard is the original constraints ^ flipped bit must be flipped
 - Soft is that **assignment for each variable = original one**

Evaluation

- Correctness: 75%
- Performance

Benchmark	<i>S</i>	Vars	Clauses	Solutions	QUICKSAMPLER					SEARCHTREESAMPLER		UNIGEN2		
					<i>n</i>	Calls	Samples	Valid	<i>t_q</i> (μs)	<i>t_q[*]</i> (μs)	Samples	<i>t_s</i> / <i>t_q</i>	Samples	<i>t_u</i> / <i>t_q</i>
blasted_case47	28	118	328	262144	244	6616	10010929	0.564	7.5	26	11694350	41.3	3932170	426
blasted_case110	17	287	1263	16384	1387	22208	10001202	0.822	28.3	29	8502350	14.9	245762	34

- Uniqueness



Evaluation - Uniformity

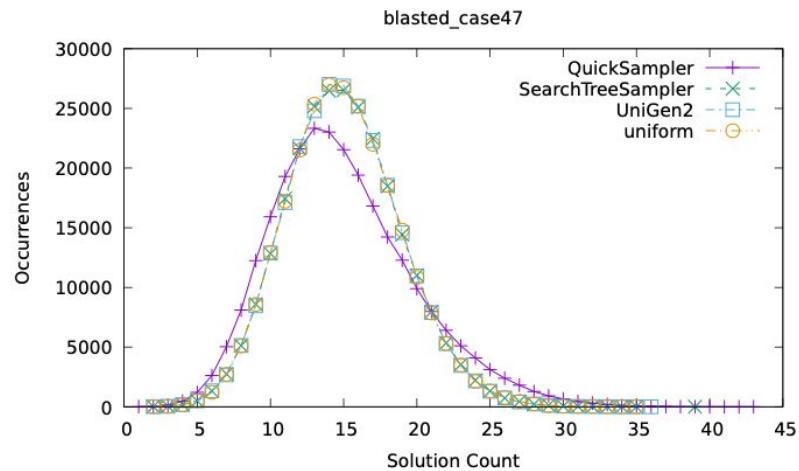


Figure 6: blasted_case47 histogram

More related works: Sampling using SMT solver as an oracle

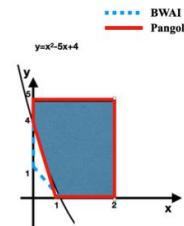
- **PANGOLIN: Incremental Hybrid Fuzzing with Polyhedral Path Abstraction (S&P 2020)**
- Treat SMT solver as an oracle, determining the path abstraction (range)
- Sampling the range using Dikin walk algorithm

$$x \leq 2 \wedge y \leq 5 \wedge x^2 - 5x + 4 \leq y \quad (1)$$

$$\begin{cases} 0 \leq x \leq 2 \\ 0 \leq y \leq 5 \\ 4 \leq 5x + y \leq 15 \end{cases}$$

Algorithm 1 Polyhedral path abstraction inference.

```
1: procedure INFERENCE( $pc \triangleq \sigma_1 \wedge \sigma_2 \dots \wedge \sigma_n$ )
2:    $pc$ , path constraint.  $\hat{pc}$ , polyhedral path abstraction.
3:
4:    $\hat{pc} \leftarrow \text{true}$ 
5:   for all input variable  $v_i$  in  $pc$  do
6:      $min \leftarrow SMToptMin(v_i, pc)$ 
7:      $max \leftarrow SMToptMax(v_i, pc)$ 
8:      $\hat{pc} \leftarrow \hat{pc} \wedge min \leq v_i \leq max$ 
9:   end for
10:  for all atomic predicate  $\sigma_i$  in  $pc$  do
11:    if  $\sigma_i$  contains linear expression  $\iota_i$  then
12:       $min \leftarrow SMToptMin(\iota_i, pc)$ 
13:       $max \leftarrow SMToptMax(\iota_i, pc)$ 
14:       $\hat{pc} \leftarrow \hat{pc} \wedge min \leq \iota_i \leq max$ 
15:    end if
16:  end for
17:
18:  return  $\hat{pc}$ 
19: end procedure
```



How does SMT-opt work?

Symbolic Optimization with SMT
Solvers (POPL '14)

$$\varphi \equiv 0 \leq x \leq 3 \wedge 0 \leq z \leq 2 \wedge (2y \leq -x + 4 \vee 4y = 3x + 3),$$

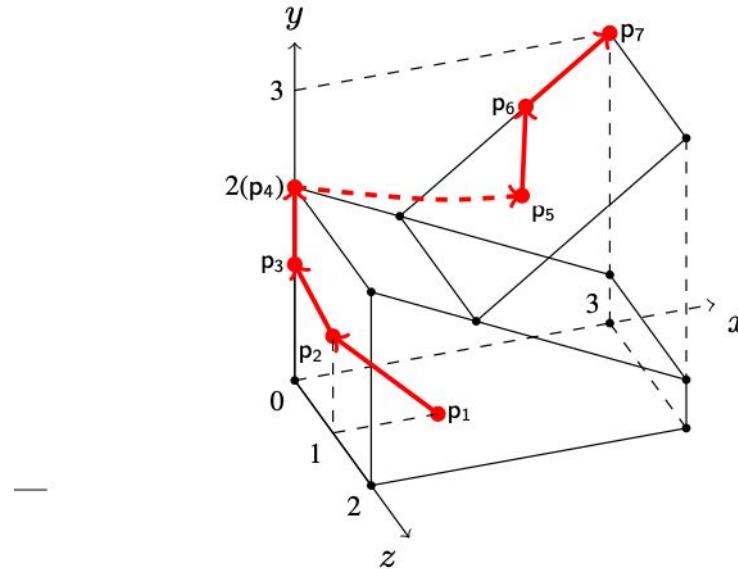


Figure 2. Illustration of SYMBA on a 3-D example.

More related works: leverage extra information to speedup SMT/SAT solving

- Range
 - Pangolin (SP20) - add the range constraints to the formula
 - Trident (ISSTA20)
 - Assigning boolean variables before search
 - E.g if we know, $x < C$ (we reduce 32 bits to $\log C$ bits in the vector)
- Variable dependency (add another heuristic)

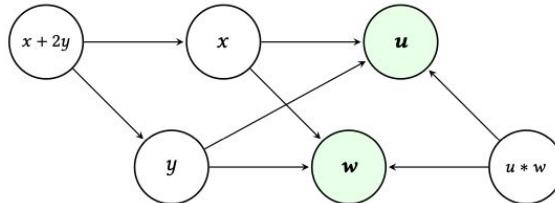


Figure 3: Data-dependence graph for the constraint $\phi \equiv x = u + w \wedge y = 2 * u - w \wedge x + 2 * y < 10 \wedge u * w < 60$.