
Efficient Sampling of SAT solutions for
Testing (ICSE ‘18)

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach and Koushik Sen (EECS Department, UC Berkeley)

Background

● In software testing, generating a lot random solutions to the constraints is a
important problem.

○ Conventional symbolic execution and dynamic symbolic execution uses SMT solver to
generate ONE solution for the path constraint.

■ Not very scalable due to path explosion
○ Generating multiple solutions to constraint can test multiple paths having the same path prefix

Background: SAT problem

● SAT problem: determining if there exists an assignment (of variables) which
satisfies a boolean formula. (First problem proven to be NP-complete)

● How to solve?
○ DPLL algorithms (introduced in 60s, still the basis for modern solvers)

■ CNF form ((a ∨ ¬b) ^ (¬a ∨ b)) One solution: [1,1]
■ Backtracking: Assign true/false for one variable, and then solve the sub-problems

(branching/splitting).
■ Pruning: Unit propagation/Pure literal elimination
■ Heuristics: Which variable to try first? (e.g. the variable that has the most occurrences)

○ Non-DPLL algorithms
■ Stochastic Local Search (WalkSAT)

● Pick a random assignment, then try to flip one variable.

Background: Translate SMT problem to SAT problem

● A SMT problem asks to decide if a logic-formula (background theories
expressed in first-order logic) can be satisfied.

● Eager approach - encoding and translating (bit-blasting)
○ Example (x != 0) ^ (y | 2 = z)

■ Let x=[b1,b2], y=[b3,b4], z=[b5,b6]
■ b1 ∨ b2, (b3 = 1) ^ (b4 = b6)
■ CNF form: (b1 ∨ b2) ^ (b3) ^ (b4 ∨ ¬b6) ^ (¬b4 ∨ b6)

● Lazy approach
○ First asks SAT for an assignment and then checks for consistency.
○ Example: (x>0 ∨ y = 100) ^ (x<3 ∨ y = 200)

■ SAT solver assigns [False, False] to (x>0), (x<3). Inconsistency!
■ [True, True], [True, False], [False, True] all are satisfiable assignments.

Problem: how to get multiple assignments quickly and
uniformly
● Uniformity:

○ Given the set of all satisfiable assignments R, the solutions should be uniformly sampled from
R.

● Benefits of uniformity:
○ Ensure the diversity the inputs, exploring more program states.

Related works (baselines):

● Based on universal hashing (e.g. UniGen)
○ Idea: select a set of universal hashing functions to uniformly partition the solution sparse and

then plug the hash function (XOR of boolean variables) to the constraints (e.g. original
constraints ^ hash function)

○ Strong uniformity guarantee.
○ Bad performance (for each sampling, needs to make a call to SAT)

● SearchTreeSampler
○ Also uses SAT solver as a black-box
○ Maintain a tree a pseudo-solutions. Level i in the tree stores partial-solutions with the first i

boolean variables assigned.
○ Recursively build the tree

■ Sample a pseudo-solutions uniformly from level i, and then call SAT to enumerate all
satisfiable pseudo-solutions in level i+1 (e.g. original constraints ^ pseudo-solution of i
^ new probing bits in level i+1)

● Others: treat SAT solver as white boxes

Quick Sampler Algorithm
● Overall idea:

○ Sample a random solution
○ Explore the neighbors (

delta-mutations)
○ Combining two mutations

● Intuition:
○ δa and δb consist of a minimal set of

bits which can be flipped while still
preserving the satisfiability of the
formula.

○ So the bits in δa are likely to be closely
related to each other by some clauses
in the formula.

○ It is likely that those clauses would still
be satisfied in σ ⊕ (δa ∨ δb), where
we flip all the bits from δa in addition to
the bits from δb .

Implementation

● Use SAT solver as an oracle, to answer MAX-SAT queries
● MAX-SAT query

○ Given a set of hard constraints and a set of soft constraints, can you satisfy all the hard
constraints and maximum possible number of soft constraints.

● How to find a random solution?
○ Randomly assign boolean variables.
○ Then call MAX-SAT(hard, soft),

■ where hard is the original constraints,
■ soft is that the assignment for each variable = randomly assigned one

● How to find a delta?
○ For one solution, flip one bit of it
○ Then call MAX-SAT(hard, soft)

■ where hard is the original constraints ^ flipped bit must be flipped
■ Soft is that assignment for each variable = original one

Evaluation

● Correctness: 75%
● Performance

● Uniqueness

Evaluation - Uniformity

More related works: Sampling using SMT solver as an
oracle
● PANGOLIN: Incremental Hybrid Fuzzing with

Polyhedral Path Abstraction (S&P 2020)
● Treat SMT solver as an oracle, determining the path

abstraction (range)
● Sampling the range using Dikin walk algorithm

How does SMT-opt work?
Symbolic Optimization with SMT
Solvers (POPL ‘14)

More related works: leverage extra information to speedup
SMT/SAT solving

● Range
○ Pangolin (SP20) - add the range constraints to the formula
○ Trident (ISSTA20)

■ Assigning boolean variables before search
● E.g if we know, x < C (we reduce 32 bits to logC bits in the vector)

● Variable dependency (add another heuristic)

