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Background

● In software testing, generating a lot random solutions to the constraints is a 
important problem.

○ Conventional symbolic execution and dynamic symbolic execution uses SMT solver to 
generate ONE solution for the path constraint.

■ Not very scalable due to path explosion
○ Generating multiple solutions to constraint can test multiple paths having the same path prefix



Background: SAT problem

● SAT problem: determining if there exists an assignment (of variables) which 
satisfies a boolean formula.  (First problem proven to be NP-complete)

● How to solve? 
○ DPLL algorithms (introduced in 60s, still the basis for modern solvers)

■ CNF form ( (a ∨ ¬b) ^ (¬a ∨ b) )   One solution: [1,1] 
■ Backtracking: Assign true/false for one variable, and then solve the sub-problems 

(branching/splitting). 
■ Pruning: Unit propagation/Pure literal elimination
■ Heuristics: Which variable to try first? (e.g. the variable that has the most occurrences )

○ Non-DPLL algorithms
■ Stochastic Local Search (WalkSAT)

● Pick a random assignment, then try to flip one variable.



Background: Translate SMT problem to SAT problem 

● A SMT problem asks to decide if a logic-formula (background theories 
expressed in first-order logic) can be satisfied.  

● Eager approach - encoding and translating (bit-blasting)
○ Example (x != 0) ^ ( y | 2 = z )  

■ Let x=[b1,b2], y=[b3,b4], z=[b5,b6] 
■ b1 ∨ b2,   (b3 = 1) ^ (b4 = b6)
■ CNF form:  (b1 ∨ b2) ^ (b3) ^ (b4 ∨ ¬b6) ^ (¬b4 ∨ b6)

● Lazy approach
○ First asks SAT for an assignment and then checks for consistency. 
○ Example: (x>0 ∨ y = 100 ) ^ (x<3 ∨ y = 200)

■  SAT solver assigns [False, False] to (x>0), (x<3).  Inconsistency!
■ [True, True], [True, False], [False, True] all are satisfiable assignments.



Problem: how to get multiple assignments quickly and 
uniformly
● Uniformity:

○ Given the set of all satisfiable assignments R, the solutions should be uniformly sampled from 
R.

● Benefits of uniformity:
○ Ensure the diversity the inputs, exploring more program states.



Related works (baselines):

● Based on universal hashing (e.g. UniGen)
○ Idea: select a set of universal hashing functions to uniformly partition the solution sparse and 

then plug the hash function (XOR of boolean variables) to the constraints ( e.g.  original 
constraints ^ hash function )

○ Strong uniformity guarantee.
○ Bad performance (for each sampling, needs to make a call to SAT)

● SearchTreeSampler
○ Also uses SAT solver as a black-box
○ Maintain a tree a pseudo-solutions. Level i in the tree stores partial-solutions with the first i 

boolean variables assigned. 
○ Recursively build the tree

■ Sample a pseudo-solutions uniformly from level i, and then call SAT to enumerate all 
satisfiable pseudo-solutions in level i+1  ( e.g. original constraints ^ pseudo-solution of  i 
^ new probing bits in level i+1) 

● Others: treat SAT solver as white boxes



Quick Sampler Algorithm
● Overall idea:

○ Sample a random solution
○ Explore the neighbors ( 

delta-mutations)
○ Combining two mutations

● Intuition:
○ δa and δb consist of a minimal set of 

bits which can be flipped while still 
preserving the satisfiability of the 
formula. 

○ So the bits in δa are likely to be closely 
related to each other by some clauses 
in the formula. 

○ It is likely that those clauses would still 
be satisfied in σ ⊕ (δa ∨ δb ), where 
we flip all the bits from δa in addition to 
the bits from δb .



Implementation

● Use SAT solver as an oracle, to answer MAX-SAT queries
● MAX-SAT query

○ Given a set of hard constraints and a set of soft constraints, can you satisfy all the hard 
constraints and maximum possible number of soft constraints.

●  How to find a random solution?
○ Randomly assign boolean variables.
○ Then call MAX-SAT(hard, soft), 

■ where hard is the original constraints,
■  soft is that the assignment for each variable = randomly assigned one

●  How to find a delta?
○ For one solution, flip one bit of it
○ Then call MAX-SAT(hard, soft)

■ where hard is the original constraints ^ flipped bit must be flipped
■ Soft is that assignment for each variable = original one



Evaluation

● Correctness: 75%
● Performance

● Uniqueness 

 



Evaluation - Uniformity 



More related works: Sampling using SMT solver as an 
oracle
● PANGOLIN: Incremental Hybrid Fuzzing with 

Polyhedral Path Abstraction (S&P 2020)
● Treat SMT solver as an oracle, determining the path 

abstraction (range)
● Sampling the range using Dikin walk algorithm

 



How does SMT-opt work?
Symbolic Optimization with SMT 
Solvers (POPL ‘14)



More related works: leverage extra information to speedup 
SMT/SAT solving

● Range
○ Pangolin (SP20) - add the range constraints to the formula
○ Trident (ISSTA20)

■ Assigning boolean variables before search
● E.g  if we know, x < C (we reduce 32 bits to logC bits in the vector)

● Variable dependency (add another heuristic)


