Efficient Sampling of SAT solutions for
Testing (ICSE “18)

Rafael Dutra, Kevin Laeufer, Jonathan Bachrach and Koushik Sen (EECS Department, UC Berkeley)

Background

e In software testing, generating a lot random solutions to the constraints is a

important problem.
o Conventional symbolic execution and dynamic symbolic execution uses SMT solver to
generate ONE solution for the path constraint.
m Not very scalable due to path explosion
o Generating multiple solutions to constraint can test multiple paths having the same path prefix

Background: SAT problem

e SAT problem: determining if there exists an assignment (of variables) which
satisfies a boolean formula. (First problem proven to be NP-complete)

e How to solve?

o DPLL algorithms (introduced in 60s, still the basis for modern solvers)

m CNFform((aV 7b)*(ma V b)) One solution: [1,1]

m Backtracking: Assign true/false for one variable, and then solve the sub-problems

(branching/splitting).

m Pruning: Unit propagation/Pure literal elimination

m Heuristics: Which variable to try first? (e.g. the variable that has the most occurrences)
o Non-DPLL algorithms

m Stochastic Local Search (WalkSAT)

e Pick arandom assignment, then try to flip one variable.

Background: Translate SMT problem to SAT problem

e A SMT problem asks to decide if a logic-formula (background theories
expressed in first-order logic) can be satisfied.

e Eager approach - encoding and translating (bit-blasting)
o Example (x!=0)*(y|2=2)
m Let x=[b1,b2], y=[b3,b4], z=[b5,b6]
m b1VDb2 (b3=1)"(b4=0>b6)
m CNF form: (b1 V b2) " (b3) " (b4 V —b6) * (7b4 V b6)
e Lazy approach
o First asks SAT for an assignment and then checks for consistency.
o Example: (x>0 V y=100)" (x<3 V y =200)
m SAT solver assigns [False, False] to (x>0), (x<3). Inconsistency!
m [True, True], [True, False], [False, True] all are satisfiable assignments.

Problem: how to get multiple assignments quickly and
uniformly

e Uniformity:
o Given the set of all satisfiable assignments R, the solutions should be uniformly sampled from
R

e Benefits of uniformity:
o Ensure the diversity the inputs, exploring more program states.

Related works (baselines):

e Based on universal hashing (e.g. UniGen)

o ldea: select a set of universal hashing functions to uniformly partition the solution sparse and

then plug the hash function (XOR of boolean variables) to the constraints (e.g. original
constraints * hash function)

o Strong uniformity guarantee.

o Bad performance (for each sampling, needs to make a call to SAT)
e SearchTreeSampler

o Also uses SAT solver as a black-box

o Maintain a tree a pseudo-solutions. Level i in the tree stores partial-solutions with the first i
boolean variables assigned.

o Recursively build the tree

m Sample a pseudo-solutions uniformly from level i, and then call SAT to enumerate all
satisfiable pseudo-solutions in level i+1 (e.g. original constraints * pseudo-solution of i
A new probing bits in level i+1)

e Others: treat SAT solver as white boxes

Quick Sampler Algorithm

e Overall idea:
o Sample a random solution
o Explore the neighbors (
delta-mutations)
o Combining two mutations

e |[ntuition:

o 0a and db consist of a minimal set of
bits which can be flipped while still
preserving the satisfiability of the
formula.

o So the bits in da are likely to be closely
related to each other by some clauses
in the formula.

o ltis likely that those clauses would still
be satisfied in o @ (da V db), where
we flip all the bits from da in addition to
the bits from ob .

0
D
0a=0®0g:

Op :

op =0®d:
(6a V Op) :
c=0®(0q V) :

010001011011
100011000000
110010011011
010001101000
000000110011
110011101000
100010110011

Figure 1: Combining two mutations.

Implementation

e Use SAT solver as an oracle, to answer MAX-SAT queries
o MAX-SAT query

o Given a set of hard constraints and a set of soft constraints, can you satisfy all the hard
constraints and maximum possible number of soft constraints.

e How to find a random solution?
o Randomly assign boolean variables.
o Then call MAX-SAT (hard, soft),
m where hard is the original constraints,
m softis that the assignment for each variable = randomly assigned one
e How to find a delta?
o For one solution, flip one bit of it
o Then call MAX-SAT (hard, soft)
m where hard is the original constraints * flipped bit must be flipped
m Soft is that assignment for each variable = original one

Evaluation

e Correctness: 75%
e Performance

QUICKSAMPLER SEARCHTREESAMPLER UNIGEN2
Benchmark |S] Vars Clauses Solutions n Calls Samples Valid tq (ps) t; (us) Samples ts/tg | Samples ty/tq
blasted_case47 28 118 328 262144 244 6616 10010929 0.564 7.5 26 11694350 413 3932170 426
blasted_case110 17 287 1263 16384 1387 22208 10001202 0.822 28.3 29 8502350 14.9 245762 34

e Uniqueness

40

60 80 100
Benchmarks

120 140

160

Evaluation - Uniformity

Occurrences

30000

25000

20000

15000

10000

5000

blasted_case47

T

T T T T T

SearchTreeSampler
UniGen2
uniform

T T T
QuickSampler —+—

X

Solution Count

Figure 6: blasted_case47 histogram

45

More related works: Sampling using SMT solver as an

oracle

e PANGOLIN: Incremental Hybrid Fuzzing with
Polyhedral Path Abstraction (S&P 2020)

e Treat SMT solver as an oracle, determining the path
abstraction (range)

e Sampling the range using Dikin walk algorithm

r<2Ay<B5Az?—-bBzx+4<y 1)

0<z<2
0<y<5
4<d5x+y<15

Algorithm 1 Polyhedral path abstraction inference.

procedure INFERENCE(pc £ o1 A 05... A)

1

2 pc, path constraint. pc, polyhedral path abstraction.
3

4: pe + true

5: for all input variable v; in pc do

6 min < SMToptMin(vs, pc)

7 maz < SMToptMaz(vi, pc)

8: pe + pc A min < v; < mazx

9: end for
10: for all atomic predicate o; in pc do
11: if o; contains linear expression ¢; then
12: min < SMToptMin(v;, pc)
13: maz < SMToptMaz(t;, pc)
14: pe « pc Amin < 1; < mazr
15: end if
16: end for
17:

18: return ¢

19: end procedure

How does SMT-opt work?

Symbolic Optimization with SMT
Solvers (POPL ‘14)

p=0<2<3N0<2<2A 2y —z+4V4y =3z +3),

Figure 2. Illustration of SYMBA on a 3-D example.

More related works: leverage extra information to speedup
SMT/SAT solving

e Range
o Pangolin (SP20) - add the range constraints to the formula
o Trident (ISSTA20)
m Assigning boolean variables before search
e E.g if we know, x < C (we reduce 32 bits to logC bits in the vector)

e \Variable dependency (add another heuristic)

Efk

Figure 3: Data-dependence graph for the constraint ¢ = x =
U+wAy=2*xu—-wAx+2xy<10Aux*w <60.

